Checkmarx vs GitLab

Both Checkmarx and GitLab Ultimate offer open source component scanning along with Static Application Security Testing. Checkmarx
offers IAST instead of DAST and does not offer container scanning.

The Checkmarx vision is closest to GitLab among the app sec vendors. But because they must integrate into the rest of the SDLC via APIs,
their path toward execution is more limited. However, like the other app sec vendors, Checkmarx is expensive. It is priced per developer with
arough estimate of 12 Developers for $59k USD per year or 50 Developers for $99k USD per year. Checkmarx uses Whitesource for
dependency scanning and charges an extra $12k USD per year for this open source scanning.

Checkmarx excels in that they are context aware, meaning they can mark what is not exploitable based on path. GitLab lacks this capability.

GitLab automatically includes broad security scanning with every code commit including Static and Dynamic Application Security Testing,
along with dependency scanning, container scanning, and license management. All of this is part of the single GitLab Ultimate application.

FEATURES ® v

Static Application Security Testing

GitLab allows easily running Static Application Security Testing (SAST) in CI/CD pipelines; checking

for vulnerable source code or well known security bugs in the libraries that are included by the

application. Results are then shown in the Merge Request and in the Pipeline view. This feature is ° o
available as part of [Auto DevOps](https://docs.gitlab.com/ee/topics/autodevops/#auto-sast) to

provide security-by-default.

Learn more about Static Application Security Testing

Dependency Scanning

GitLab automatically detects well known security bugs in the libraries that are included by the

application, protecting your application from vulnerabilities that affect dependencies that are used

dynamically. Results are then shown in the Merge Request and in the Pipeline view. This feature is ° °
available as part of [Auto DevOps](https://docs.gitlab.com/ee/topics/autodevops/#auto-

dependency-scanning) to provide security-by-default.

Learn more about Dependency Scanning

Container Scanning

When building a Docker image for your application, GitLab can run a security scan to ensure it does

not have any known vulnerability in the environment where your code is shipped. Results are then

shown in the Merge Request and in the Pipeline view. This feature is available as part of [Auto ° o
DevOps](https://docs.gitlab.com/ee/topics/autodevops/#auto-container-scanning) to provide

security-by-default.

Learn more about container scanning

https://www.youtube.com/watch?v=gTGvl_V5rOA&feature=youtu.be
https://docs.gitlab.com/ee/user/project/merge_requests/sast.html
https://docs.gitlab.com/ee/user/project/merge_requests/dependency_scanning.html
https://docs.gitlab.com/ee/user/project/merge_requests/container_scanning.html

Dynamic Application Security Testing

Once your application is online, GitLab allows running Dynamic Application Security Testing (DAST)
in CI/CD pipelines; your application will be scanned to ensure threats like XSS or broken
authentication flaws are not affecting it. Results are then shown in the Merge Request and in the
Pipeline view. This feature is available as part of [Auto DevOps]
(https://docs.gitlab.com/ee/topics/autodevops/#auto-sast) to provide security-by-default.

Learn more about application security for containers

Interactive Application Security Testing

[IAST](https://blogs.gartner.com/neil_macdonald/2012/01/30/interactive-application-security-
testing/) combines elements of static and dynamic application security testing methods to improve
the overall quality of the results. IAST typically uses an agent to instrument the application to
monitor library calls and more. GitLab does not yet offer this feature.

Runtime Application Security Testing

RASP uses an agent to instrument the application to monitor library calls as the application is
running in production. Unlike other security tools, RASP can take action to block threats in real-time,
similar to a Web Application Firewall but from within the app's runtime environment rather than at
the network layer. GitLab does not yet offer this feature.

License Management

Check that licenses of your dependencies are compatible with your application, and approve or
blacklist them. Results are then shown in the Merge Request and in the Pipeline view.

Learn more about License Management

https://docs.gitlab.com/ee/user/project/merge_requests/dast.html
https://docs.gitlab.com/ee/user/project/merge_requests/license_management.html

	Checkmarx vs GitLab
	GitLab compared to other DevOps tools

