
ElectricFlow	vs	GitLab
GitLab	compared	to	other	DevOps	tools

Electric	Cloud	ElectricFlow	is	a	platform	which	provides	deployment	automation,	release	orchestration,	and	DevOps	insights	to	help
organizations	deliver	better	software	faster.	The	base	platform	(formerly	known	as	Electric	Commander)	is	used	by	many	organizations	to
automate	their	CI/CD	pipelines.

Although	Electric	Cloud	claims	complete	end	to	end	DevOps,	the	platform	requires	a	lot	of	integration	to	other	tools	in	the	tool	chain	in
order	to	supplement	functionality,	as	do	just	about	all	CI/CD	point	tools.	In	contrast,	GitLab	come	pre-integrated	with	fundamental	and
extended	functionality	built-in	across	the	DevOps	lifecycle.	An	example	is	with	security	tools,	where	other	CI/CD	vendors	such	as	Electric
Cloud	claim	DevSecOps,	they	merely	integrate	to	3rd	party	security	tools	and	maybe	provide	a	dashboard.	GitLab	comes	with	many	security
scanning	capabilities	built-in

FEATURES

Environments	and	deployments

GitLab	CI	is	capable	of	not	only	testing	or	building	your	projects,	but	also	deploying	them	in	your
infrastructure,	with	the	added	benefit	of	giving	you	a	way	to	track	your	deployments.	Environments
are	like	tags	for	your	CI	jobs,	describing	where	code	gets	deployed.

Learn	more	about	environments

Per-environment	permissions

Developers	and	QA	can	deploy	to	their	own	environments	on	demand	while	production	stays	locked
down.	Build	engineers	and	ops	teams	spend	less	time	servicing	deploy	requests,	and	can	gate	what
goes	into	production.

Learn	about	protected	branches	in	GitLab

Environments	history

Environments	history	allows	you	to	see	what	is	currently	being	deployed	on	your	servers,	and	to
access	a	detailed	view	for	all	the	past	deployments.	From	this	list	you	can	also	re-deploy	the	current
version,	or	even	rollback	an	old	stable	one	in	case	something	went	wrong.

Learn	more	about	history	of	an	environment

Environment-specific	variables

Limit	the	environment	scope	of	a	variable	by	defining	which	environments	it	can	be	available	for.

Learn	how	to	configure	environment-specific	variables

https://docs.gitlab.com/ee/ci/environments.html
https://docs.gitlab.com/ee/user/project/protected_branches.html
https://docs.gitlab.com/ee/ci/environments.html#viewing-the-deployment-history-of-an-environment
https://docs.gitlab.com/ee/ci/variables/#limiting-environment-scopes-of-variables


Group-level	variables

Define	variables	at	the	group	level	and	use	them	in	any	project	in	the	group.

Learn	how	to	configure	variables

Object	storage	for	artifacts

Artifacts	can	be	stored	on	Object	Storage	(Amazon	S3)

Learn	how	to	store	artifacts	on	object	storage

Run	CI/CD	jobs	on	Windows

GitLab	Runner	supports	Windows	and	can	run	jobs	natively	on	this	platform.	You	can	automatically
build,	test,	and	deploy	Windows-based	projects	by	leveraging	PowerShell	or	batch	files.

Install	GitLab	Runner	on	Windows

Run	CI/CD	jobs	on	macOS

GitLab	Runner	supports	macOS	and	can	run	jobs	natively	on	this	platform.	You	can	automatically
build,	test,	and	deploy	for	macOS	based	projects	by	leveraging	shell	scripts	and	command	line
tools.

Install	GitLab	Runner	on	macOS

Run	CI/CD	jobs	on	Linux	ARM

GitLab	Runner	supports	Linux	operating	systems	on	ARM	architectures	and	can	run	jobs	natively	on
this	platform.	You	can	automatically	build,	test,	and	deploy	for	Linux	ARM	based	projects	by
leveraging	shell	scripts	and	command	line	tools.

Install	GitLab	Runner	on	Linux

Run	CI/CD	jobs	on	FreeBSD

GitLab	Runner	supports	FreeBSD	and	can	run	jobs	natively	on	this	platform.	You	can	automatically
build,	test,	and	deploy	for	FreeBSD-based	projects	by	leveraging	shell	scripts	and	command	line
tools.

Install	GitLab	Runner	on	FreeBSD

https://docs.gitlab.com/ee/ci/variables/#variables
https://docs.gitlab.com/ee/administration/job_artifacts.html#using-object-storage
https://docs.gitlab.com/runner/install/windows.html
https://docs.gitlab.com/runner/install/osx.html
https://docs.gitlab.com/runner/install/linux-manually.html
https://docs.gitlab.com/runner/install/freebsd.html


Manage	JUnit	reports	created	by	CI	jobs

Many	languages	use	frameworks	that	automatically	run	tests	on	your	code	and	create	a	report:	one
example	is	the	JUnit	format	that	is	common	to	different	tools.	GitLab	supports	browsing	artifacts
and	you	can	download	reports,	but	we're	still	working	on	a	proper	way	to	integrate	them	directly
into	the	product.

Read	more	on	the	issue

Details	on	duration	for	each	command	execution	in	GitLab	CI/CD

Other	CI	systems	show	execution	time	for	each	single	command	run	in	CI	jobs,	not	just	the	overall
time.	We're	reconsidering	how	job	output	logs	are	managed	in	order	to	add	this	feature	as	well.

Read	more	on	the	issue

Auto	DevOps

Auto	DevOps	brings	DevOps	best	practices	to	your	project	by	automatically	configuring	software
development	lifecycles	by	default.	It	automatically	detects,	builds,	tests,	deploys,	and	monitors
applications.

Read	more	about	Auto	DevOps	in	the	documentation

Protected	Runners

Protected	Runners	allow	you	to	protect	your	sensitive	information,	for	example	deployment
credentials,	by	allowing	only	jobs	running	on	protected	branches	to	access	them.

Read	more	on	the	issue

Globally	distributed	cloning	with	GitLab	Geo

When	development	teams	are	spread	across	two	or	more	geographical	locations,	but	their	GitLab
instance	is	in	a	single	location,	fetching	and	cloning	large	repositories	can	take	a	long	time.	Built	for
distributed	teams,	GitLab	Geo	allows	for	read-only	mirrors	of	your	GitLab	instance,	reducing	the
time	it	takes	to	clone	and	fetch	large	repos	and	improving	your	collaboration	process.

Learn	more	about	GitLab	Geo

Support	for	High	Availability

To	avoid	downtime,	GitLab	Enterprise	Edition	Premium	offers	support	for	High	Availability	(HA).	A
Service	Engineer	will	help	you	identify	your	specific	HA	needs	and	map	out	an	architecture.

Learn	more	about	GitLab's	High	availability

https://gitlab.com/gitlab-org/gitlab-ce/issues/34102
https://gitlab.com/gitlab-org/gitlab-runner/issues/2412
https://docs.gitlab.com/ee/topics/autodevops/
https://docs.gitlab.com/ee/ci/runners/#protected-runners
file:///features/gitlab-geo/
https://docs.gitlab.com/ee/administration/high_availability/


Deploy	Boards

GitLab	Premium	ships	with	Deploy	Boards	offering	a	consolidated	view	of	the	current	health	and
status	of	each	CI/CD	environment	running	on	Kubernetes.	The	status	of	each	pod	of	your	latest
deployment	is	displayed	seamlessly	within	GitLab	without	the	need	to	access	Kubernetes.

Learn	more	about	Deploy	Boards

Incremental	rollout	deployments

GitLab	can	allow	you	to	deploy	a	new	version	of	your	app	on	Kubernetes	starting	with	just	a	few
pods,	and	then	increase	the	percentage	if	everything	is	working	fine.

Learn	more	about	configuring	incremental	rollout	deployments

Canary	Deployments

GitLab	Enterprise	Edition	Premium	can	monitor	your	Canary	Deployments	when	deploying	your
applications	with	Kubernetes.

Learn	more	about	configuring	Canary	Deployments

Minimal	CI/CD	configuration

GitLab	CI/CD	requires	less	configuration	for	your	pipelines	than	other	similar	setups	like	Jenkins.

Learn	more	about	GitLab	CI/CD

Multiple	integrations

GitLab	can	integrate	with	Authentication	and	Authorization	(LDAP	/	AD)	mechanisms,	multiple	3rd
party	services,	CI/CD,	and	other	tools	such	as	ALM,	PLM,	Agile	and	Automation	tools.

Learn	more	about	GitLab's	integrations

Easy	upgrade	process

Using	our	official	Linux	repositories	or	the	official	Docker	image,	upgrading	GitLab	is	a	breeze.

Learn	how	to	upgrade	your	GitLab	instance

Community	based,	users	can	help	shape	the	product

GitLab	has	open	issue	trackers	for	almost	all	of	its	operations.	From	GitLab	itself	to	infrastructure
and	marketing,	you	can	help	shape	the	product.

View	all	GitLab	contributors

https://docs.gitlab.com/ee/user/project/deploy_boards.html
https://docs.gitlab.com/ee/topics/autodevops/index.html#incremental-rollout-to-production
https://docs.gitlab.com/ee/user/project/deploy_boards.html#canary-deployments
file:///features/gitlab-ci-cd/
https://docs.gitlab.com/ee/integration/
file:///update
http://contributors.gitlab.com/


Kubernetes	Cluster	Monitoring

Monitor	key	metrics	of	your	connected	Kubernetes	cluster.

Learn	more	about	Cluster	Monitoring

ChatOps

Execute	common	actions	directly	from	chat,	with	the	output	sent	back	to	the	channel.

Learn	more	about	ChatOps

Enforced	Two-factor	Authentication	(2FA)

Two-factor	authentication	secures	your	account	by	requiring	a	second	confirmation,	in	addition	to
your	password.	That	second	step	means	your	account	stays	secure	even	if	your	password	is
compromised.	The	ability	to	enforce	2FA	provides	further	security	by	making	sure	all	users	are	using
it.

Learn	more	about	Enforced	GitLab	2FA

IP	Whitelisting

IP	Whitelisting	defines	safe	IP	network	addresses	from	which	clients	can	access	and	interact	with	the
repository	server.	This	helps	prevent	unwanted	third	parties	from	accessing	your	account	even	if
they	have	acquired	a	team	memberâ€™s	email	address	and	password.

Learn	more	about	GitLab	IP	Whitelisting

Domain	Specific	Lanuage

A	Domain	Specific	Lanuage	(DSL)	for	defining	infrstructure	configuration	allows	thinking	in
resources,	not	files	or	commands	to	write	declarative	rather	then	procedural	code.

https://docs.gitlab.com/ee/user/project/clusters/#monitoring-your-kubernetes-cluster
https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/security/two_factor_authentication.html
https://docs.gitlab.com/ee/administration/monitoring/ip_whitelist.html

	ElectricFlow vs GitLab
	GitLab compared to other DevOps tools


