
1

An Agile iteration
with GitLab

2

What's inside?
Overview

GitLab for Agile software development
»» Epics → GitLab epics
»» Roadmaps → GitLab Roadmaps
»» User stories → GitLab Issues	
»» Task → GitLab task lists	
»» Product backlog → GitLab Issue lists and prioritized labels	
»» Sprints → GitLab milestones	
»» Releases → GitLab milestones	
»» Points and estimation → GitLab issue weights	
»» Pull Requests → GitLab Merge Requests	
»» Agile board → GitLab Issue Boards	
»» Burndown charts → GitLab Burndown Charts

GitLab Agile project management flow
»» Getting started	
»» Delivering with ease	
»» GitLab for your Agile teams

3

Overview
Agile is one of the most important and transformative methodologies introduced to the software
engineering discipline in recent decades. While not everyone can agree on the detailed terminology
of Agile concepts, it has made a significant positive impact on software teams’ ability to efficiently
create customer-centric products. The history of Agile and its many transformations are well
documented — from the introduction of Waterfall in the 1970s and Scrum and XP in the 1990s to the
Agile Manifesto in the early 2000s and SAFe (Scaled Agile Framework) and LeSS (Large Scale Scrum)
in more recent times.

Agile is a strong complement to organizations looking to implement DevOps; however, there is
significant complexity in creating a toolchain to help organizations accomplish their DevOps goals.
This complexity often results in delays in the end-to-end DevOps process, since bottlenecks
surface at the integration points of different tools.

REVIEW STAGING PRODUCTION

BUILD

UNIT TEST

INTEGRATION TESTS

TEST

CI PIPELINE CD PIPELINE

MERGE
REQUEST

COMMIT

MASTER

ISSUES

EPICS

ROADMAPS

MILESTONES

SCMPLAN

GitLab has been designed to be flexible enough to adapt to your methodology and help your team
embrace Agile efforts. With GitLab, your efforts can seamlessly tie into your organization’s current
DevOps initiative. This whitepaper maps Agile artifacts to GitLab features, and explains how
customers have successfully run high-performing Agile teams with GitLab.

4

GitLab for Agile software
development
Epics → GitLab epics
Some Agile practitioners specify an abstraction above user stories (and sometimes “Features”), often
called an Epic, that indicates a larger user flow consisting of multiple features. In GitLab, an epic also
contains a title and description, much like an issue, but it allows you to attach multiple sub-epics
or child epics to it to indicate hierarchy. Epics can span across multiple teams, on multiple projects,
and can even be tracked on multiple boards. Epics are almost always delivered over a set of releases
and/or sprints.

Roadmaps → GitLab Roadmaps
Roadmaps, a time stamped view of company initiatives, are an accumulation of epics, features,
and issues. GitLab Roadmaps give you visibility into Epic progress over a period of weeks, months,
or quarters. Epics can be given fixed start and end dates or have a collection of issues roll-up into an
epic and the start/end date will be determined by the issues’ assigned time box. GitLab Roadmaps
provide great visibility into the progress of high level initiatives.

User stories → GitLab Issues
When using an Agile methodology, you often start with a user story to capture a single feature
that delivers business value for users. In GitLab, a single issue within a project serves this purpose.
Creating issues in GitLab increases transparency, improves collaboration, and allows teams to have
a better understanding and focus on customer needs. As you build out your backlog with issues,
prioritization helps with coordination of customer needs and helps eliminate technical risks that
may affect the business. Issues are an integral part of the different Agile methodologies, including
Kanban, Scrum, SAFe, and more. GitLab Issues allow teams to know why they are building and
what value it generates.

https://docs.gitlab.com/ee/user/group/epics/
https://docs.gitlab.com/ee/user/project/issues/

5

The GitLab Issue page has a title and a
description area, providing a space to
document any details, such as the business
value and relevant personas in a user story.
The sidebar provides integration with other
Agile-compatible features like the epic that
the issue belongs to, the milestone in which
the issue is to be worked on, and the weight
of the issue, reflecting the estimated effort.

Task → GitLab task lists
Often, a user story is further separated into individual tasks. You can create a task list within an
issue’s description in GitLab to further identify those individual tasks. Tasks are written by the team,
for the team, using the language the team understands. A task is a piece of work that combines with
other tasks to complete an Issue (user story). Its purpose is not to have independent deliverable
functionality or generate business value, but to aid in the issue’s deliverable to which it is directly
correlated. For example, seeing functions of an issue organized into tasks that are specific to design,
code, test, document, or UX. Tasks enable teams to be more cross-functional and work in parallel
specific to their functional expertise.

Product backlog → GitLab Issue lists
and prioritized labels
Product or business owners typically create user stories to reflect the needs of the business and
customers. The user stories are prioritized in a product backlog to capture urgency and desired
order of development. The product owner communicates with stakeholders to determine
priorities and refine the backlog.

In GitLab, there are dynamically generated issue lists which users can view to track their backlog.
Labels can be created and assigned to individual issues, which then allows you to filter the issue
lists by a single label or multiple labels, enabling further flexibility. Priority labels can also be used
to order the issues in those lists. Additionally, Scoped Labels allow teams to annotate their issues,
merge requests, and epics to achieve custom fields and custom workflow states by leveraging a
special label title syntax.

https://docs.gitlab.com/ee/user/markdown.html#task-lists
https://docs.gitlab.com/ee/user/project/issues/#issues-per-project
https://docs.gitlab.com/ee/user/project/labels.html
https://docs.gitlab.com/ee/user/project/labels.html#prioritize-labels
https://docs.gitlab.com/ee/user/project/labels.html#scoped-labels-premium

6

Sprints → GitLab milestones
A sprint represents a finite time period in which work is to be completed, which may be a week, a few
weeks, or perhaps a month or more. The product owner and the development team meet to decide
work that is in scope for the upcoming sprint. GitLab’s milestones feature lets teams give milestones
a start date and a due date to capture the time period of the sprint. The team then puts issues into
that sprint by assigning them to that particular milestone.

Releases → GitLab milestones
Releases can also be organized in the same manner, which may be a few weeks, a month, or more.
The product owner and the development team meet ahead of the upcoming release and decide what
issues will be on the sprint backlog. GitLab’s milestones feature can capture the time period of the
release. In Kanban, this approach is most common as sprints are not part of this methodology.

Points and estimation → GitLab issue weights
During scoping meetings, user stories are communicated, and the level of technical effort is estimated
for each in-scope user story. In GitLab, issues have a weight attribute, which teams can use to indicate
the estimated effort. User stories can be further broken down to technical deliverables, sometimes
documenting technical plans and architecture. In GitLab, this information can be documented in the
issue, or in the merge request description, as the merge request is often the place where technical
collaboration occurs.

During the sprint (GitLab milestone), development team members pick up user stories to work on,
one by one. In GitLab, issues have assignees. So team members can assign themselves to issues
to indicate what they’re working on.

Pull Requests → GitLab Merge Requests
Merge requests, often known as pull requests, allow teams to visualize and collaborate on the
proposed changes to source code that exist as commits on a given Git branch. A Merge Request (MR)
is the basis of GitLab as a code collaboration and version control platform. It is as simple as the name
implies: A request to merge one branch into another. Merge requests can easily be created from
within an issue. Once a merge request is closed, it will automatically close the associated issue.

https://docs.gitlab.com/ee/user/project/milestones/
https://docs.gitlab.com/ee/user/project/milestones/
https://docs.gitlab.com/ee/workflow/issue_weight.html
https://docs.gitlab.com/ee/user/project/merge_requests/
https://docs.gitlab.com/ee/user/project/issues/multiple_assignees_for_issues.html

7

Agile board → GitLab Issue Boards
Throughout the sprint, issues move through various stages, such as Ready for dev, In dev, In QA,
In review, and Done, depending on the workflow in your particular organization. Typically, these are
columns in an Agile board. In GitLab, issue boards allow you to define your stages and enable you to
move issues through them. The team can configure the board with respect to the milestone (where
sprints or releases have been defined), and move issues from the product backlog to the release or
sprint backlogs.

In Scrum, the issues would be assigned to the upcoming sprint and product owners, enabling
Scrum masters and team members to have visibility into issues and the assigned sprint. During
daily standups, the team looks at the board together to see the status of the sprint from a workflow
perspective. Boards can also be organized by assignee so that product owners and Scrum masters
can view various stages of the workflow.

The GitLab issue list pulls in issues relevant to the particular group or project scope. There are
powerful filtering and ordering capabilities that allow you to quickly narrow down that list.
For example, you can see a product backlog of prioritized user stories by filtering by prioritized
labels. You can also anticipate which user stories will be worked on in a particular sprint by filtering
by milestone.

The GitLab Issue Board also pulls in issues dynamically, similar to the GitLab issue list, but it allows
for more flexible workflows. You can set up individual lists in the board to reflect Agile board stages.
Your team can then control and track user stories . For example, if a story moves from Ready for dev
to Released to production, you’ll have full visibility into progress.

Burndown charts → GitLab Burndown Charts
The development team wants to know if they are on track in real time and mitigate risks as they arise.
GitLab provides burndown charts, allowing the team to visualize the work scoped in the current sprint
“burning down” as they are being completed. Teams can react to risks sooner and adapt accordingly.
For example, using burndown charts helps teams inform business stakeholders that certain features
are anticipated to be delayed to a future sprint.

Toward the end of the sprint, the development team demos completed features to various
stakeholders. With GitLab, this process is made simple using Review Apps so that even code not
yet released to production, but in various testing, staging, or UAT environments can be demoed.

https://docs.gitlab.com/ee/user/project/issue_board.html
https://docs.gitlab.com/ee/user/project/issue_board.html#board-with-configuration
https://docs.gitlab.com/ee/user/project/milestones/burndown_charts.html

8

Review Apps and CI/CD features are integrated with the merge request itself. These same tools are
useful for developers and QA roles to maintain software quality, whether through automated testing
with CI/CD or manual testing in a Review App environment.

A team retrospective at the end of the
sprint can be documented in the provided
wiki, so that lessons learned and action
items are tracked over time. During the
actual retrospective, the team can look
at the milestone page, which displays the
burndown chart and other statistics of
the completed sprint.

GitLab Agile project
management flow

Agile Project Management

�������� ����� ������ �������������� ������ ��������

https://docs.gitlab.com/ee/ci/review_apps/index.html
https://docs.gitlab.com/ee/ci/README.html
https://docs.gitlab.com/ee/user/project/wiki/index.html
https://docs.gitlab.com/ee/user/project/milestones/

9

Getting started
High-performing Agile teams use GitLab for Agile project management, starting with Epics and
Roadmaps. As organizations take their large ideas and organize them into Epics, the information is
further broken down into sub-epics (features) and even smaller into issues (user stories). As teams
iteratively complete the issues that have been created from these larger ideas (epics), they contribute
to the completion of that epic, with their work displayed in Roadmaps within GitLab. Roadmaps give
leadership a high level view of portfolio progress. When issues are created, teams can apply issue
weight based on their organization’s predetermined scale (e.g. Fibonacci), helping teams select
what issues they should work on based on capacity.

Product owners, product managers, Scrum masters, and team members then use Milestones as
a way to define their time boxes. With either releases or sprints, GitLab’s Milestone feature allows
teams to organize based on their agility. GitLab issue boards give teams the ability to groom their
product backlogs and organize by either release or sprint boards, depending on their chosen
Agile methodologies.

Delivering with ease
Later, developers can create a Merge Request directly from issues and effortlessly checking a branch
from master so that the developer can begin work. Merge requests provide visibility into commits,
diffs, and pipelines, and once the merge request is closed, it will automatically close the associated
issue. Traditionally, developers must manually close a user story with a separate tool, but GitLab
automates this step. The direct connection between Agile project management and version control
can only be found in GitLab, with no integration needed.

Teams can continually track their progress with their releases and sprints via Burndown Charts
located in Milestones. Using Burndown Charts, teams monitor their issues or issue weights for a
time boxed period. Following the completion of a release or sprint, teams conduct retrospectives
using the Wiki feature to reflect on what worked and what didn’t work for that sprint or release.

GitLab for your Agile teams
GitLab has been designed to be flexible enough to adapt to your methodology and help your team
embrace Agile efforts. GitLab provides end-to-end DevOps, encapsulating 10 defined stages:
Manage, Plan, Create, Verify, Package, Secure, Release, Configure, Monitor, and Defend. Agile
project management resides under the Manage and Plan categories and is the starting point in
the DevOps lifecycle.

10

 As the only tool that offers one complete application for Agile project management, version control,
continuous integration/delivery/deployment, packaging, security, and monitoring, GitLab removes
the complexity of DevOps toolchains.

For more information on GitLab’s Agile project management features, please view our educational
videos on how to setup your organization.

About GitLab
GitLab is the first single application for the entire DevOps lifecycle. Only GitLab enables Concurrent
DevOps, unlocking organizations from the constraints of today’s toolchain. GitLab provides
unmatched visibility, radical new levels of efficiency and comprehensive governance to significantly
compress the time between planning a change and monitoring its effect. This makes the software
lifecycle 200% faster, radically improving the speed of business.

GitLab and Concurrent DevOps collapses cycle times by driving higher efficiency across all stages
of the software development lifecycle. For the first time, Product, Development, QA, Security, and
Operations teams can work concurrently in a single application. There’s no need to integrate and
synchronize tools, or waste time waiting for handoffs. Everyone contributes to a single conversation,
instead of managing multiple threads across disparate tools. And only GitLab gives teams complete
visibility across the lifecycle with a single, trusted source of data to simplify troubleshooting and drive
accountability. All activity is governed by consistent controls, making security and compliance first-
class citizens instead of an afterthought.

Built on Open Source, GitLab leverages the community contributions of thousands of developers and
millions of users to continuously deliver new DevOps innovations. More than 100,000 organizations,
including Ticketmaster, ING, NASDAQ, Alibaba, Sony, and Intel trust GitLab to deliver great software
at new speeds.

Start your free trial

https://www.youtube.com/watch?v=cVC8bcV8zsQ
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_content=justcommit

11

